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Drag reduction by polymers is bounded between two universal asymptotes, the von Kármán log law of the
law and the maximum drag reduction �MDR� asymptote. It is theoretically understood why the MDR asymp-
tote is universal, independent of whether the polymers are flexible or rodlike. The crossover behavior from the
Newtonian von Kármán log law to the MDR is, however, not universal, showing different characteristics for
flexible and rodlike polymers. In this paper we provide a theory for this crossover phenomenology.
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I. INTRODUCTION

The phenomenon known as “drag reduction� by polymers
in turbulent channel flows �1,2� is conveniently discussed in
channel geometry for fixed pressure heads, such that the re-
duction in the drag is manifested as an increased mean ve-
locity. For the sake of comparison between different fluids it
is convenient to choose normalized coordinates. Denote the
mean pressure �per unit density� gradient p��−�p /�x where
x, y, and z are the lengthwise, wall-normal, and spanwise
directions, respectively. The length and width of the channel
are usually taken much larger than the midchannel height L,
making the latter a natural rescaling length for the introduc-
tion of dimensionless �similarity� variables, also known as
“wall units” �3�. Thus the Reynolds number Re�, the normal-
ized distance from the wall y+, and the normalized mean
velocity V+�y+� �which is in the x direction with a depen-
dence on y only� are defined by

Re� � L�p�L/�0, y+ � y Re/L, V+ � V/�p�L , �1�

where �0 is the kinematic viscosity of the neat fluid. For
Newtonian fluids the profile of the mean velocity V+�y+� is
universal, starting with the viscous sublayer in which
V+�y+�=y+ and then, at y+ somewhere between 6 and 12, the
profile crosses over to the universal von-Kármán log-law of
the wall �cf. Fig. 1�

V+�y+� = �K
−1 ln y+ + B . �2�

Upon the addition of small concentrations of polymers, the
drag is reduced and for the same value of p� one finds an
increase in V+�y+�. This phenomenon exhibits both universal
and nonuniversal aspects. The universal aspect is the maxi-
mum drag reduction �MDR� asymptote, which is the largest
attainable profile V+�y+�. This was determined experimen-
tally by Virk who found �2�

V+�y+� =
1

�V
ln�e�Vy+� for y+ � 12. �3�

While �K
−1�2.5, �V

−1�12, leading to a significantly larger
mean velocity at the MDR as compared with von Kármán’s
log law. The MDR appears independent of the nature of the

polymer �for example, whether it is flexible or rodlike�, of
the length of the polymer, and of the concentration. On the
other hand, the way that the system attains the MDR is not
universal, and it depends on all of the above. In particular, it
appears that flexible and rodlike polymers attain the MDR,
as a function of the concentration, in qualitatively different
ways �see, for example, Ref. �2��. The experimental informa-
tion is quite scant, but available data indicate different sce-
narios for the two types of polymers. The data in Fig. 1
indicate for large values of Re the mean-velocity profile with
flexible polymers �polyacrylamide �PAA�� follows the MDR

FIG. 1. Typical velocity profiles taken from Ref. �4�. The dashed
line shows the von Kármán law �2�, while the MDR �3� is shown as
the continuous black line. In all cases the mean velocity follows the
same viscous behavior for y+�10. After that the scenario is differ-
ent for flexible and rodlike polymers. The typical behavior for the
former is presented by the open triangles, which follow the MDR
up to a crossover point that depends on the concentration of the
polymer and on the value of Re. The rodlike behavior is exempli-
fied by the solid triangles and the open squares; the mean velocity
profiles appear to interpolate smoothly between the two asymptotes
as a function of the concentration of the rodlike polymer.
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until a point of crossover back to the “Newtonian plug,”
where it becomes parallel to von Kármán’s log law. Increas-
ing the concentration results in following the MDR further
until a higher crossover point is attained back to the New-
tonian plug �2�. On the other hand, for rodlike polymers
�sodium carboxymethylcellulose �CMC� and sodium
carboxymethylcellulose/xanthan gum blend �CMC/XG�� the
data shown in Fig. 1 indicate a different scenario. Contrary to
flexible polymers, here, as a function of the concentration,
one finds mean-velocity profiles that interpolate between the
two asymptotes �2� and �3�, reaching the MDR only for large
concentrations. A difference in the behavior of flexible and
rodlike polymers when plotting the drag as a function of the
Reynolds number was also reported by Virk and co-workers
�see Ref. �5��.

The universal MDR was fully explained in recent work,
and its parameters derived, by showing that it is an edge-
turbulent solution in a channel �6�. In other words, if one
tried to reduce the drag further �or further increase the profile
V+�y+��, one would lose the turbulent flow in favor of a lami-
nar solution. This is the reason for the universality of the
MDR and its insensitivity to the nature of the polymer. The
aim of this paper is to derive quantitatively the nonuniversal
scenarios of attaining the MDR by flexible and rodlike poly-
mers. We will limit our attention to the case of high Re, and
consider the profiles V+�y+� for different concentrations, with
the aim of explaining the phenomenology displayed in Fig.
1. The paper concludes with a definite prediction of different
crossover behavior in the mean-velocity profiles for flexible
and rodlike polymers, in agreement with the indication of
Fig. 1.

In Sec. II we summarize the available theory of drag re-
duction by flexible and rodlike polymers, based on the bal-
ance equations for energy and momentum in the turbulent
boundary layer. We derive in this section the equations sat-
isfied by the y dependence of the mean shear �in wall units�,
from which the velocity profiles are obtained by integration.
Section III presents the results together with a summary and
a discussion.

II. THEORY OF DRAG REDUCTION

A. The polymeric stress tensor

In the presence of a small concentration of polymers the
Navier-Stokes equations for the fluid velocity U�r , t� gain an
additional stress tensor

�U

�t
+ U · �U = − �p + �0�

2U + � · � ,

� · U = 0. �4�

The extra stress tensor � is due to the interaction between
the polymers and the fluid. Within the FENE-P model for
flexible polymers we have �7�

�ab�r�,t� � �p�pP�r,t�Rab�r,t� , �5�

where �p is the polymeric contribution to the viscosity at
zero shear, �p is the inverse relaxation time of the stretched

polymer, and P�r , t� is the Peterlin function, which guaran-
tees that the polymers cannot stretch more than their maxi-
mal length. In writing this expression, one adopts the stan-
dard simplification of a single relaxation time. The
conformation tensor R is obtained from the normalized end-
to-end distance vector of the polymer �̂�� /�max, averaged
over the conformation of the polymers

R � �̂�̂ . �6�

For rodlike polymer �̂ becomes a unit vector, and there is
no coil-stretching transition. Accordingly, the stress tensor
assumes a different form �8�

�ab = 6�pRabRijSij , �7�

where Sij is the strain experienced by the polymer Sij
��Ui /�rj. As explained above, the difference in form of the
stress tensor is immaterial for the universal form of the MDR
�2,9�, a phenomenon that was called “additive equivalence”
by Virk. We will see that this difference translates, however,
to a very different scenario for the attainment of the MDR.

B. The balance equations

The phenomenon of drag reduction can be understood on
the basis of the balance equations of the mechanical momen-
tum and turbulent energy �10�. These are derived on the basis
of the Reynolds decomposition

Ui�r,t� = V�y�	ix + ui�r,t� , �8�

Sij�r,t� = S�y�	ix	 jy + sij�r,t�, S�y� �
dV�y�

dy
. �9�

Writing these equations, we use the fact that in a turbulent
channel flow p� is constant, and due to the symmetry all
the other mean quantities depend on y only. In addition
to the mean shear S�y�, we need to introduce the mean tur-
bulent kinetic energy K��u2	 /2 and the Reynolds stress W
�−�uxuy	. The momentum balance equation is obtained by
averaging Eq. �4� and integrating with respect to y, ending up
with the exact equation

�0S + W + ��xy	 = p��L − y� . �10�

In wall units Eq. �10� can be written in a more elegant
form

S+ + W+ + ��xy
+ 	 = �1 − y+/Re� , �11�

where S+��0S / �p�L�, W+�W / �p�L�, and �ij
+ ��ij / �p�L�.

When Re is very large and for y+ not too large, we neglect
the second term on the right-hand side �RHS�, approximating
the RHS as unity.

The balance equation for the turbulent kinetic energy is
calculated by taking the dot product of the fluctuation part of
Eq. �4� with u;

WS =
�

�y
�uyu

2 + uyp − �iyui	 + �0�sijsij	 + ��ijsij	 . �12�

Also, this equation is exact. We simplify it by noting that the
first term on the RHS involves the spatial flux of turbulent
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energy, which is known to be negligible in the log layer. The
second term represents the dissipation which is modeled �in
wall units� as �10�

�sij
+sij

+	 � K+
 a

y+�2

+ b
�K+�3/2

y+ , �13�

where sij
+ ��0sij / �p�L� and K+�K / �p�L�. The terms on the

RHS reflect the different nature of the flow near the wall and
in the log layer. Near the wall the flow is viscous, and there-
fore a gradient of a given quantity can be estimated by the
ratio of the quantity over the distance to the wall. In the log
layer the flow is turbulent, and the rate of energy dissipation
can be estimated as the turbulent kinetic energy K�y� over
the eddy turnover time y /�K�y�. Therefore, the energy bal-
ance equation takes on the form

W+S+ = K+
 a

y+�2

+ b
�K+�3/2

y+ + ��ij
+sij

+	 . �14�

Finally, we quote the experimental fact that in the log layer
W+ and K+ are proportional to each other;

K+c2 = W+. �15�

This relation can be understood by realizing that in the log
layer there is no typical scale, and quantities of the same
dimensions should be proportional to each other. Rigorously
one can prove, using the Cauchy-Schwartz inequality, that
K+
W+ �10�. Experimentally, it was found that c�0.5 in the
Newtonian case and c�0.25 in the MDR �2,11�.

C. Effect of the polymers

In the Newtonian case, when �=0 and c=0.5, the three
equations �11�, �14�, and �15� are sufficient for determining
the three unknowns S+, K+, and W+. The best fit to Newton-
ian experiments and simulations is obtained using the values
a=3 and b=0.321, and we are going to use these values
throughout and also in the viscoelastic cases discussed be-
low. In the presence of polymers, however, we have to con-
sider the terms introduced by the polymers to these equa-
tions. The necessary theory was presented in Refs. �9,10�,
with the final results relating these terms to the yy compo-
nent of the mean conformation tensor R��R	.

��xy	 � �pRyyS , �16�

��ijsij	 � �pRyy
K

y2 . �17�

For the flexible polymer case these equations are easy to
explain: from Eq. �5� we see that ��xy	��p�p�PRxy	. For
large Deborah number De�S /�p the components of the con-
formation tensor of the flexible polymer are ordered in mag-
nitude such that �PRxx	�De Rxy and �PRxy	�De Ryy �7�.
Accordingly, Eq. �16� follows. The second of these equations
follows from a straight one-point closure. In the case of the
rodlike polymer these equations call for a more delicate deri-
vation and the reader is referred to Ref. �9� for a detailed
explanation.

Using these theoretical results the momentum and energy
equations, in the limit of large Re, are reduced to

S+ + W+ + �̃RyyS
+ = 1 �18�

and

W+S+ = K+
 a

y+�2

+ b
�K+�3/2

y+ + �̃RyyK
+
 a

y+�2

. �19�

Here �̃=�p /�0. To proceed we need to relate Ryy to the other
variables. The necessary theory is presented in Refs.
�7,9,10,12� leading to an important difference between the
flexible and the rodlike polymers

Ryy �
�K

Sy
�flexible� , �20�

Ryy �
K

S2y2 �rodlike� . �21�

We comment in passing that the difference between the y
dependence on the RHS of these two equations stems from a
delicate cancellation of the leading term in Eq. �17�. The
analysis of this cancellation was presented in full in Ref. �9�.
Substituting into Eqs. �18� and �19� we have

�effS
+ + W+ = 1 �22�

and

W+S+ = K+�eff
 a

y+�2

+ b
�K+�3/2

y+ , �23�

with the “effective viscosity”

�eff = 1 + �̃
�K+

S+y+ �flexible� , �24�

�eff = 1 + �̃
K+

�S+y+�2 �rodlike� . �25�

In the next section we will show that although the effec-
tive viscosities take on different forms for the flexible and
rodlike cases, in fact they both depend linearly on y+ when-
ever we have a log layer with S+�1/y+. The reason is that
K+ turns out to be proportional to �y+�2 and to y+ for the
flexible and the rodlike cases, respectively. Accordingly, we
will write in both cases

�eff = 1 + ��y+ − 
���� , �26�

with 
��� being the width of the viscous sublayer, and its
dependence on the slope of the effective viscosity � needs to
be determined. It is natural to present 
��� in terms of a
dimensionless scaling function f�x�,


��� = 	+f��	+� , �27�

where 	+�6 is the width of the Newtonian viscous boundary
layer. In the Newtonian limit �→0, �eff→1, and 
→	+,
hence we have f�0�=1. In Ref. �6� it was shown that the
balance equations �22� and �23� �with the prescribed form of
the effective viscosity profile� have a nontrivial symmetry
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that leaves them invariant under rescaling of the wall units.
This symmetry dictates the function 
��� in the form


��� =
	+

1 − �	+ . �28�

For more details of how this is derived see the Appendix.

D. Closing the equations

To complete the model, we have to specify the value of c
in Eq. �15�. This parameter becomes naturally a function of
�. We can find its �-dependence by identifying the width of
the viscous sublayer 
 with a /c���. This stems from the fact
that the balance equations �22� and �23� cannot support a
turbulent solution for y+�a /c���. In other words, when
y+�a /c��� the only possible solution is a negative K+ which
is not physical, indicating a loss of turbulence. This means
that the width of the viscous boundary layer �where there is
no turbulence� is a /c���. We thus find

a/c��� = 
��� . �29�

Combining then Eqs. �26�, �28�, and �29�, and putting
	+=6, we can solve and find

c��eff� =
a

6
+

a�2 − �eff�
2y+

+
a

12

�1 −

12�eff

y+ +
36�2 − �eff�2

�y+�2 − 1� . �30�

To summarize, note that Eqs. �24� and �25� can be written
as

K+ = A2�S+y+�2 �31�

with

A2 = 
�eff − 1

�̃
�2

�flexible� , �32�

A2 =
�eff − 1

�̃
�rodlike� . �33�

Using Eqs. �15� and �31�, we can rewrite Eqs. �22� and
�23� as two equations for the two variables �eff and S+;

�effS
+ + c2A2�S+y+�2 = 1 �34�

and

c2S+ = �eff
 a

y+�2

+ bAS+. �35�

Equation �35� implies

S+ =
�eff

�y+�2

a2

�c2 − bA�
. �36�

Substituting Eq. �36� into Eq. �34� gives an equation for �eff;

�eff
2 
 a

y+�2

�c2 − bA� + c2A2�eff
2 
a2

y+�2

= �c2 − bA�2. �37�

Finally, we can solve Eq. �37� to get �eff�y+� for different
values of �̃. Then we can obtain S+ and K+ using Eqs. �36�
and �31�, respectively. Integrating S+ over y+, we get also
V+�y+�.

III. RESULTS

The results of the numerical solutions of the equations are
shown in Figs. 2–4.

In Figs. 2 and 3 we present the mean velocity profile as a
function of the distance from the wall, for flexible and rod-
like polymers, respectively. The main result of this paper is
seen in the difference between these profiles as a function of
the polymer concentration. While the flexible polymer case

FIG. 2. The mean velocity profiles for flexible polymer addi-
tives with �̃=1, 5, 10, 20, 50, 100, and 500 from below to above.
Note that the profile follows the MDR until it crosses over back to
the Newtonian plug.

FIG. 3. The mean velocity profile for rodlike polymer additives
with �̃=1, 5, 10, 20, 50, 100, 500, 1000, 5000, and 10 000 from
below to above. Note the typical behavior expected for rodlike
polymers, i.e., that the profile diverges from the von Kármán log
law, reaching the MDR only asymptotically.
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exhibits the feature �2,5� that the velocity profile adheres to
the MDR until a crossover to the Newtonian plug is realized,
the rodlike case presents a “fan” of profiles, which only as-
ymptotically reach the MDR. We also notice that the flexible
polymer matches the MDR faithfully for relatively low val-
ues of �̃, whereas the rodlike case attains the MDR only for
much higher values of �̃. This result is in agreement with the
experimental finding in Refs. �13,14� that the flexible poly-
mer is a better drag reducer than the rodlike analogue.

The crossover points yc
+ from the MDR to the Newtonian

plug in the case of flexible polymers can be estimated by
realizing that K+ is zero on the MDR. We can thus ask when
K+ is, say, of the order of 10%. Using Eq. �31� with the MDR
solution S+y+�12, and substituting ��1/12 in Eq. �26�, we
end up with the

yc
+ = 12 + �̃�0.1. �38�

This estimate agrees well with the numerical results in Fig.
2. No such simple calculation is available for the case of the
rodlike polymers since there is no clear point of departure for
small �̃.

We should note that the higher efficacy of flexible poly-
mers cannot be easily related to their elongational viscosity
as measured in laminar flows. In some studies �13–15� it was
proposed that there is a correlation between the elongational
viscosity measured in laminar flows and the drag reduction
measured in turbulent flows. We find here that flexible poly-
mers do better in turbulent flows due to their contribution to
the effective shear viscosity, and their improved capability in
drag reduction stems simply from their ability to stretch,
something that rodlike polymers cannot do.

Finally, we recall that the derivation of our equations re-
lies on the fact that the turbulent kinetic energy K+ depends
linearly and quadratically on the distance from the wall for
flexible and rodlike polymers, respectively. It is important to
check that the resulting equations confirm this expectation
self-consistently. Indeed, in Fig. 4 we present the solution for

this quantity in the two cases, and find that the expectation is
fully realized.
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APPENDIX: DERIVATION OF EQ. (28)

Consider the following identity:

�eff�y+� = 1 + ��y+ − 	+�

= �1 + ��y+ − 	� + ��	 − 	+��

= g�	�
1 +
�

g�	�
�y+ − 	�� , �A1�

where

g�	� � 1 + ��	 − 	+�, 	 
 	+. �A2�

Next, introduce newly renormalized units using the effective
viscosity g�	�, i.e.,

y‡ � y+g�	�, 	‡ � 	g�	�, S‡ � S+g�	�, W‡ � W+.

�A3�

In terms of these variables the balance equations are rewrit-
ten as

�1 + ��y‡ − 	‡��S‡ + W‡ = 1, �A4�

�1 + ��y‡ − 	‡��

2���

y‡2 +
�W‡

�Ky‡ = S‡. �A5�

These equations are isomorphic to Eqs. �22� and �23� when
the latter is divided by W+ and the coefficients are identified
with the von Kármán constant, with 	+ replaced by 	‡.
The ansatz �27� is then replaced by 
���=	+g�	�−1f��	‡�.
This form is dictated by the following considerations: �i�

���→	+ when �→0, �ii� all length scales in the rescaled
units are divided by g�	�, and thus the prefactor in front of f
becomes 	+ /g�	�, and �iii� �	+ in Eq. �23� is now replaced in
Eq. �A5� by �	‡, leading to the new argument of f . Since the
function 
��� cannot change due to the change of variables,
the function 
��� should be identical to that given by Eq.
�27�;

	+f��	+� =
	+

g�	�
f��	‡� . �A6�

Using the explicit form of g�	� in Eq. �A2�, and choosing
�formally first� 	=	‡=0, we find that f���=1/ �1−��. It is
easy to verify that this is indeed the solution of the above
equation for any value of 	‡, and therefore the unique form
of Eq. �28�.

FIG. 4. The turbulent kinetic energy profile K+�y+� for the flex-
ible �solid line� and rodlike �dashed line� cases, respectively. We
note the quadratic and linear dependence respectively, as anticipated
in the text.
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